

EDUCATION FOR DEMOCRATIC CITIZENSHIP: THEORY AND TEACHING PRACTICE

Session 7/8 (3rd): Education for Democratic Citizenship and Human Rights

Education: Cross-curricular implementation

Broadening participation in Informatics

Agoritsa Gogoulou

Given the ubiquity of the computing field in society, in a variety of scientific and work fields

and facets of everyday life, it is of growing importance that all students have the opportunity

to learn informatics. However, reports reveal the underrepresentation of women and racial

and ethnic minorities in computer science (CS) courses (Bottela et al., 2019; Google LLC &

Gallup, Inc., 2016). In many countries the term “digital divide” is used to denote the

difference in access to computers and the internet between different demographic groups.

Many of these divisions are based on a person's income, race, and whether they live in urban

or rural areas. As far as the gender gap in science and technology disciplines is concerned,

this can be located before the age of 15 years and tend to persist, throughout the secondary

and postsecondary years constituting a serious issue to fundamental notions of fairness and

equity.

Students are generally unconvinced that CS is important for them to learn. Female students

are particularly skeptical about the merits of computer science education and remain less

likely to express interest than male students do in both learning computer science and in

pursuing careers in the field (Google LLC & Gallup, Inc., 2020). Teachers are on the front lines

of society’s efforts to engage students, to create learning experiences that convey

Information and Communications Technology (ICT) affordances and promote equality of

opportunity. It is important that all students have the opportunity to learn ICT skills during

their primary and secondary education, as these skills become increasingly important in

many areas of life. Digital literacy skills not only make it possible for students to engage,

create and innovate in an increasingly technology-fueled society but they also prepare them

for evolving computing occupations. The Economist Intelligence Unit (EIU) report entitled

“Driving the skills agenda: Preparing students for the future”, stresses that problem solving

is the most important skill for students’ future. High value is also given to team work and

communication. Activities should encourage students to identify a problem and generate

potential solutions through discussion and evaluation.

Computational Thinking

A core function of school education is preparing students to be capable and informed

citizens. Having a digitally competent population is significant in order to confront pressing

global issues such as climate change, resource depletion, and inequality around the world.

Understanding of CS and the nature of computation has become a necessity. Douglas

Rushkoff in 2010, in his influential book “Program or be Programmed” mentions

“When human beings acquired language, we learned not just how to listen but how

to speak. When we gained literacy, we learned not just how to read but how to write,

and as we move into an increasingly digital reality, we must learn not just how to use

programs but how to make them. …. We teach kids how to use software to write, but

not how to write software. This means they have access to the capabilities given to

them by others, but not the power to determine the value-creating capabilities of

these technologies for themselves."

There is a growing recognition that to live and function in a digital society, to solve problems

and to be creative and innovative, individuals need to develop Computational Thinking (CT)

(Namukasa et al., 2015). CT is “an approach to solving problems, designing systems and

understanding human behaviour that draws on concepts fundamental to computing” (Wing,

2006). The term “Computational Thinking” was first introduced in 1980, by Computer

Scientist and Educator, Seymour Papert, in his pioneering book “Mindstorms. Children,

Computers, and Powerful Ideas” (page 4):

“In this book I discuss ways in which the computer presence could contribute to

mental processes not only instrumentally but in more essential, conceptual ways,

influencing how people think even when they are far removed from physical contact

with a computer."

Computational thinking is a structured way to solve problems. As described by Jeannette

Wing, (2006), computational thinking has the following features:

Conceptualizing, not programming: computer science is not computer programming.

Coding is simply one expression of computer science concepts and problems.

Fundamental, not a rote skill: it’s a fundamental skill as every person needs to know (or

should know) how to solve problem to participate in society. On the other hand,

computers support rote tasks and computer-based solution designed by persons.

A way that humans, not computers, think: it’s a way human beings think about the world

and its problems.

Complements and combines mathematical and engineering thinking: Computational

thinking includes math and engineering. It’s not a subset of either discipline. Computer

scientists leverage math and engineering to develop solutions that may go beyond the

limits of either way of thinking.

Ideas, not artifacts: computational thinking is not about output, it’s the ideas that lead

to creation.

For everyone, everywhere: computational thinking is available to all people, whether they

use technology or not, whether their solutions require technology or not.

Computing at School organization outline their view for CT in school in the guide

“Computational Thinking: a guide for teachers” as follows (Csizmadia et al., 2015):

Computational thinking is a cognitive or thought process involving logical reasoning by

which problems are solved and artefacts, procedures and systems are better understood.

It involves:

− the ability to think algorithmically

− the ability to think in terms of decomposition

− the ability to think in generalizations, identifying and making use of patterns

− the ability to think in abstractions, choosing good representations

− the ability to think in terms of evaluation

The main arguments for teaching CT topics are (Duncan & Bell, 2015):

− Preparing students for future endeavours in computing

− Giving students the confidence and capacity to be more than just users of digital

technology

− Increased diversity in the computing field

− Facing any stereotypes of computing

− Encouraging early development of general CT skills

Learning computer science (CS) helps people better understand technology-enabled world.

It provides students with skills that are broadly applicable and positions them for high-

demand jobs. Computer-based problem solving learning experiences prepare students for

success across sectors, equip them will core life skills, and provide a foundation for

citizenship in today’s world. Aheer and her colleagues (2020) developed a cross-institution

activity as part of an Internationalization at Home (IaH) initiative to expose first year

computer science students to the concept of computing for social good in an international

context. The aim was to explore how differences in culture can influence students’

perceptions and approaches to computing for social good. They were introduced to the use

of computing for social good and how to better understand another culture. The analysis

revealed that the students had much more in common with each other than they had

differences. The majority felt they were more similar to their peers of the other culture than

they were different. Despite their cultural difference, students of different cultures can have

similar ideas about computing for social good.

CT has to do with problem solving, on the basis of computer based programs. When dealing

with problem solving in a computer-based environment, the following dispositions are

present and enhanced:

− The ability to communicate and work with others to achieve a common goal or
solution

− The ability to think of various problems, to deal with open ended problem, to

formulate problems in a way that enables the use of a computer and digital devices

to solve them

− Confidence in dealing with complexity and in investigating various solutions

− Tolerance for ambiguity and ability in decision making

Some effort has been made to establish operationalizable frameworks for CT. These

frameworks focus on the constructs that emerge from existing game-based and media-

narrative programming environments. For example, Brennan and Resnick’s (2012) defined a

framework of CT which categorizes CT into three dimensions taking into account

programming in SCRATCH:

− The concepts designers engage with in programming, i.e. sequences, loops,

parallelism, events, conditionals, operators and data

− The practices designers develop as they engage with the concepts, i.e. forming

iterations, testing and debugging, reusing and remixing, abstracting and modularizing

− The perspectives designers form about the world around them and about them-

selves, i.e. connecting modules/parts, setting new goals, questioning.

In a more general sense, these three dimensions include

− computational concepts: the fundamental concepts students engage with as they

program or engage in CT oriented practices-such as algorithmic thinking,

decomposition, abstraction, parallelism, and pattern generalization

− computational practices: the actual practices students develop as they encounter and

engage with the concepts; this includes collecting and sorting data, designing and

remixing computational models, debugging simulations, documenting one’s work,

and collaboratively breaking down complex problems

− computational perspectives: the perspectives students form about the world around

them and about themselves as they comprehend these concepts and engage in such

practices; sense how systems function, how they can be improved

It is considered necessary to teach CT outside the area of computer science and start relevant

activities even from the age of kindergarten (Fessakis, Gouli, & Mavroudi, 2013). Teachers

may provide both interactive and independent activities to gently challenge children and

help awaken their sense of self-expression, confidence and creativity. Much of the content

in preschool and kindergarten is taught with hands-on manipulatives, games, and songs,

and with thoughtful planning, young children can engage in such activities and develop

computational thinking in age-appropriate ways. For example, at this young age, activities

can begin to scaffold an understanding of algorithms, sequencing, events, conditionals, and

repeat loops.

The skills, attitudes, and approaches that make up CT are fundamental, universal,

transferrable, and particularly appropriate and useful for the computer age. CT is a

combination of disciplined mental habits, attitudes of endurance, and essential soft skills.

Learning computational thinking can benefit students both economically and academically.

Computer Science (CS) Unplugged

The term CS Unplugged was introduced by Tim Bell, Mike Fellows and Ian Witten at the

University of Canterbury in New Zealand, when they shared an online book, called

“Computer Science Unplugged: Off-line activities and games for all ages”, aiming to attract

students to study computer science in high school and post-secondary education and to

enhance subject knowledge. Unplugged activities can be implemented without the use of

computers. CS Unplugged activities are kinesthetic, engaging, and above all emphasize that

computer science is about problem solving, and not synonymous with programming. They

also make “abstract concepts both tangible and visible”. Unplugged activities can be a

powerful way to introduce students to computing concepts, to help them improve their

problem solving skills, to make them collaborate and express their thoughts about computer

issues, to increase students’ interest and motivation for the CS field (Namukasa, 2015).

Unplugged activities present fundamental concepts of Computer Science such as

algorithms, artificial intelligence, graphics, information theory, human computer interfaces,

programming languages, and so on.

The unplugged approach differs from Papert’s constructionism as Papert recognizes

programming both in physical and computer-based environment, the major factor for

constructing knowledge. However, both approaches consider concrete activities that aim to

teach complex CS ideas to children. CS concepts are not simplified, but instead made

accessible with practical experiences. Also, unplugged activities generally have children

using their bodies or the physical manipulation of objects to perform various functions and

come to a conclusion (Bell & Lodi, 2019).

By using unplugged activities, younger learners, girls and novices feel more comfortable,

they may change their attitude and approach computers in order to learn programming or

other tools and concepts.

In CS Unplugged there are many links to Computational Thinking. Teaching Computational

Thinking through CS Unplugged activities, the students learn how to:

− describe a problem

− identify the important details needed to solve this problem

− break the problem down into small, logical steps

− use these steps to create a process (algorithm) that solves the problem

− evaluate the solution

These skills are transferable to other subject matters area, but are particularly relevant to

developing digital systems and solving problems using the capabilities of computers.

The CS unplugged activities have been successfully used in classrooms and outreach

programs. Children seem to love the fact that they can get involved and try the activities

themselves. Carmichael (2008) used the activities as part of a camp designed to get girls

interested in Computer Science. She found that the activities increased students

understanding of the concept and of its relation to Computer Science. Carmichael noted

that “after the CS Unplugged activity for this topic was finished, they seemed to feel more

comfortable with the connection, particularly because of the discussion included in the

activity.” Renate Thies and Jan Vahrenhold, from the Technical University of Dortmund in

Germany, investigated the suitability of CS Unplugged activities for use in a classroom. They

used CS Unplugged activities to teach half the students, and used alternative tools for the

other half of the students. Their findings showed CS Unplugged activities were equally

effective in transferring knowledge as there was no significant difference in achievement

between the group who learned with CS Unplugged activities and the group who learned

with alternative materials. Additionally, the researchers studied the impact of using CS

Unplugged activities in different grade levels, and found that the activities had a significant

positive impact when used with middle school classes (Rodriguez, Rader & Camp, 2016).

A pioneering resource for unplugged activities is Computer Science (CS) Unplugged

www.csunplugged.org. Other websites include www.cs4fn.org, and

teachinglondoncomputing.org, which provide resources for teachers who are looking to

include unplugged computational thinking activities into their curricula. There are many

“unplugged” activities that aren’t necessarily based on csunplugged.org, usually called

kinesthetic activities. The term “unplugged” is sometimes used to refer to the curated

activities on the open-source CS Unplugged website (csunplugged.org), but in other

contexts refers to any activity relating to computer science carried out away from a

computer.

The main characteristics of the Unplugged activities are (Nishida et al., 2009):

No computers: computers are not used directly in the activities. This facilitates the execution

of the activities in any place and CS background is not a prerequisite for participation.

http://www.csunplugged.org/

Games: The activities are generally based around a game or challenge, so that children see

them as play, which leads to interest, curiosity and motivation. For example, the surprise of

the magic trick attracts the interest of the students, and their desire to play the role of the

magician keeps their interest to understand the background knowledge.

Kinaesthetic: As physical objects are used, such as cards, papers, whiteboard, the children

are engaged in kinaesthetic activities. Learning is achieved by moving around, by physically

engaging the people and objects around. For example, the presence of an obstacle on the

playground makes students move, discuss and think of ways to proceed.

Student and collaborative centred: Students are actively involved. The activities generally

promote interaction with other students, and encourage students to discover answers by

trial and error. Working with other students encourages teamwork and communication.

Low-cost and easy implementation: The activities are easy to prepare and use only

inexpensive equipment, much of which can be found in a school. Most require paper and

pencil, perhaps cards, string, chalk, whiteboard markers.

Story-telling context: Elements of fantasy and story-telling are used to engage students.

Problems are presented as part of a story rather than as an abstract mathematical challenge.

This can draw younger students into the activity, and emphasizes the value of creativity

rather than dry learning.

Since CS Unplugged activities are fast to deploy and do not require expensive specialist

equipment, they have also been used as the basis of connecting computer science with other

disciplines. At primary school level connections with maths, physical education, literacy,

creative writing, art are pursued by the teachers. Moreover, cs unplugged activities were

used to connect computational thinking to physics and music (Bell & Vahrenhold, 2018). For

example, sorting networks can be integrated with topics that students are exploring in other

areas; they might be used to compare dates in history, words in alphabetical order, note

pitches in music, or numbers written in a foreign language. Such activities provide motivation

for students to repeatedly compare the values that they are learning, and to see them in

various situations. At the same time, they are becoming familiar with a computational model

and fundamental CS concepts.

CS Competitions

CS competitions are widely used to promote interest in Computer Science at various levels

of education.

Bebras

Bebras is an international initiative aiming to promote Informatics (Computer Science, or

Computing) and computational thinking among school students at all ages. The challenge

is performed at schools using computers or mobile devices. Problems are designed to

introduce the participants to concepts and methods that are typical to computer science.

Solving a Bebras task requires reading abilities specific to the written content of a problem

statement and abilities in the use of interactive artifacts.

As interest in competitions essentially depends on problems, attraction, invention, tricks,

surprise should be desirable features of each problem presented to competitors. The

problems have to be selected carefully (Dagienė & Futschek, 2008). In 2007, some active

members of the Bebras Organizing Committee proposed the following topics for the Bebras

contests on informatics and computer literacy:

INF Information comprehension

Representation (symbolic, numerical, visual)

Coding, encryption

ALG Algorithmic thinking

Including programming aspects

USE Using computer systems

e.g. search engines, email, spread sheets, etc.

General principles, but no specific systems

STRUC Structures, patterns and arrangements

Combinatorics

Discrete structures (graphs, etc.)

PUZ Puzzles

Logical puzzles

Games (mastermind, minesweeper, etc.)

SOC ICT and Society

Social, ethical, cultural, international, legal issues

Criteria for good Bebras tasks that are used by the International Bebras Organizing

Committee include: the tasks …

are independent from specific IT systems

No specific operating system, programming language or application software is

taken for granted. All system specific terms must be explained within a task.

have easy understandable problem statements

A problem statement should be presented as easy as possible: easy

understandable wording, easy understandable presentation of the problem

(maybe use of pictures, examples, embedded in a proper story, use of a simulation

or an interactive solving process), a problem statement should never be

misleading.

are politically correct

Contain no gender, racial or religious stereotypes.

should be funny

Some sort of excitement or fun should be provoked by a good task or by solving

the task.

In particular, the students have to solve a series of tasks of three different difficulty levels.

Each task takes between 1 to 4 minutes to be solved.

Examples of tasks

The following task is an algorithmic thinking (ALG) task, since a solution strategy

incorporates strategies to find all different ways of building bridges. The possibility of

interactively building bridges that are counted automatically and that can also be reset

allows a sort of game-based learning.

Beaver discovered a number of islands in a lake and

decided to build bridges to connect them. While

building bridges Beaver follows the rules: the bridges

must be built keeping the directions East-West and

North-South and they shouldn’t overlap each other.

Help Beaver to build as many bridges as possible. Use

the mouse to connect pairs of islands.

The following task focuses on the concept of “Heap”. The task provides a suitable story that

makes the understanding of a “Heap” more intuitively and more easily.

To make a group photo of 7 beavers it is necessary that the

smaller beavers stand in front and the larger beavers in back.

Unfortunately the beavers stand in a wrong order. In the

graphics below those beavers are connected by a line where the

back beaver should be larger than the front beaver. The only

operation to rearrange beavers you can do is exchanging any

two beavers of the group.

What is the minimum number of exchange-operations, that after

all, the beavers are ready for taking picture?

Please perform a minimum number of exchange-operations by

clicking on pairs of beavers.

The Hour of Code (HoC)

HoC was launched in 2013 as an activity planned in the Computer Science Education Week,

in collaboration with big names of the software industry (Microsoft, Google, Apple, Bill Gates,

Mark Zuckerberg,. . .). Code.org is the organising body of the Hour of Code. It was founded

in 2012 and its vision is every student in every school should have the opportunity to learn

computer science, increase the participation of women and other underrepresented

students to computer science. Code.org aims to bring computer programming into the

mainstream dialogue and raise national awareness. Although the main HoC offer is based

on an online activity, it does exist also in an “unplugged” version. Surprisingly, the unplugged

alternative is rather different from the interactive one as it proposes different tasks focusing

more on methodological issues than on coding.

The “Hour of Code” activities are game-based. Students can learn computer science basics

by playing a game. The “Hour of Code” tutorials teach students how to utilize problem-

solving skills and logic to win the games. The “Hour of Code” tutorials are on-line, web-

based, and work on computers or mobile devices. The “Hour of Code” tutorials are designed

for all ages and are available in over 45 languages (Du, Wimmer, & Rada, 2018). Many online

computer programming portals, including Tynker, Lightbot, Codecademy, Scratch, and Khan

Academy, provide free online tutorials to teach students (ages 4–104) basic programming

concepts in one hour. There are options for every age and experience level, from

kindergarten and up. Also, the HoC activities are self-guided.

The Hour of Code is only the first step for students to learn that computer science is fun and

creative. The findings of this study show that the participants became much more interested

in programming after they tried the tutorials and expressed an interest to know more about

coding. Millions of the participating teachers and students have decided to go beyond one

hour - to learn for a whole day or a whole week or longer, and many students have decided

to enroll in an entire course (or even a college major) as a result.

The HoC activities nurture problem-solving skills, logic, and creativity. The HoC creates an

opportunity for every student (boys and girls) of all backgrounds to try computer science

together worldwide (Wilson, 2014). Code.org regularly produces new materials and

programs to improve diversity in computer science.

References

Aheer, K., Bauer, K., & Macdonell, C. (2020). Internationalizing the Student Experience

Through Computing for Social Good. In Proceedings of the 51st ACM Technical

Symposium on Computer Science Education (pp. 434-440).

Bell T. & Vahrenhold J. (2018). CS Unplugged—How Is It Used, and Does It Work?. In:

Böckenhauer HJ., Komm D., Unger W. (eds) Adventures Between Lower Bounds and

Higher Altitudes. Lecture Notes in Computer Science, vol 11011. Springer, Cham.

https://doi.org/10.1007/978-3-319-98355-4_29

Bell, T. & Lodi, M. (2019). Constructing Computational Thinking Without Using Computers.

Constructivist foundations, Vrije Universiteit Brussel, Special Issue “Constructionism and

Computational Thinking”, 14 (3), 342-351.

Botella, C., Rueda, S., López-Iñesta, E., & Marzal, P. (2019). Gender Diversity in STEM

Disciplines: A Multiple Factor Problem. Entropy, 21(1), 30. MDPI AG. Retrieved from

http://dx.doi.org/10.3390/e21010030

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. In Proceedings of the 2012 annual meeting of

the American Educational Research Association (pp. 1–25). Vancouver, Canada.

Carmichael, G. (2008). Girls, Computer Science, and games. SIGCSE Bull., 40(4), 107–110.

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C. & Woollard, J. (2015).

Computational thinking A guide for teachers. Technical report. Computing at Schools,

2015.

Dagienė, V., & Futschek, G. (2008). Bebras international contest on informatics and computer

literacy: Criteria for good tasks. In International conference on informatics in secondary

schools-evolution and perspectives (pp. 19-30). Springer, Berlin, Heidelberg.

Dee, T. & Gershenson, S. (2017). Unconscious Bias in the Classroom: Evidence and

Opportunities. Mountain View, CA: Google Inc. Retrieved from https://goo.gl/O6Btqi.

Du, J., Wimmer, H. & Rada, R. (2018). “Hour of Code”: A Case Study. Information Systems

Education Journal, 16(1), 51.

Duncan, C. & Bell, T. (2015). A Pilot Computer Science and Programming Course for Primary

School Students. In Proceedings of the 10th Workshop in Primary and Secondary

Computing Education - WiPSCE '15, ACM, pp. 39-48.

Fessakis, G., Gouli, E., & Mavroudi, E.(2013). Problem solving by 5–6 years old kindergarten

childrenin a computer programming environment: A case study. Computers & Education,

63, 87–97.

Google LLC & Gallup, Inc. (2016). Diversity Gaps in Computer Science: Exploring the

Underrepresentation of Girls, Blacks and Hispanics. Retrieved from

https://news.gallup.com/reports/196331/diversity-gaps-computer-science.aspx

Google LLC & Gallup, Inc. (2020). Current Perspectives and Continuing Challenges in

Computer Science Education in U.S. K-12 Schools. Retrieved from

https://services.google.com/fh/files/misc/computer-science-education-in-us-

k12schools-2020-report.pdf

Namukasa, I. K., Kotsopoulos, D., Floyd, L., Weber, J., Kafai, Y. B., Khan, S., et al. (2015). From

computational thinking to computational participation: Towards achieving excellence

through coding in elementary schools. In G. Gadanidis (Ed.), Math + coding symposium.

London: Western University.

National center for women & Information Technology – NCWIT (2018). Computer Science Is

for Everyone: A toolkit for middle and high schools to increase diversity in computer

science education. Retrieved from https://www.ncwit.org/resources/computer-science-

everyone-toolkit-middle-and-high-schools-increase-diversity-computer

Nishida, T., Kanemune, S., Idosaka, Y., Namiki, M., Bell, T., & Kuno, Y. (2009). A CS unplugged

design pattern. ACM SIGCSE Bulletin, 41(1), 231-235.

Rodriguez, B., Rader, C., & Camp, T. (2016). Using student performance to assess CS

unplugged activities in a classroom environment. In proceedings of the 2016 ACM

conference on innovation and technology in computer science education (pp. 95-100).

http://dx.doi.org/10.3390/e21010030
https://goo.gl/O6Btqi
https://services.google.com/fh/files/misc/computer-science-education-in-us-k12schools-2020-report.pdf
https://services.google.com/fh/files/misc/computer-science-education-in-us-k12schools-2020-report.pdf

Wilson, C. (2014). Hour of code: we can solve the diversity problem in computer science.

ACM Inroads, 5(4), 22-22.

